hemocell
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | List of all members
analysis.Analysis Class Reference

Public Member Functions

 __init__ (self, domain, atomic_block, pattern, lattice_unit=0.5)
 
 __repr__ (self)
 
 cells (self)
 
 dimensions (self)
 
 cell_count (self)
 
 node_count (self)
 
 cpu_count (self)
 
 offsets (self)
 
 cell_mesh_grid (self, outfile)
 
 cell_positions (self, pos_file, outfile)
 
 required_particles (self, hematocrit)
 

Public Attributes

 domain
 
 atomic_block
 
 blocks
 
 lattice_unit
 
 cells
 
 dimensions
 

Constructor & Destructor Documentation

◆ __init__()

analysis.Analysis.__init__ (   self,
  domain,
  atomic_block,
  pattern,
  lattice_unit = 0.5 
)

Member Function Documentation

◆ __repr__()

analysis.Analysis.__repr__ (   self)

◆ cell_count()

analysis.Analysis.cell_count (   self)
The total count of lattice Boltzmann cells in the domain.

◆ cell_mesh_grid()

analysis.Analysis.cell_mesh_grid (   self,
  outfile 
)
Generates a cell packing along a fixed mesh-grid orientation.

This creates a cell packing from a given cell count in x, y, z
direction for the smallest atomic block. The pattern of those cells is
then repeated throughout the domain. This has the advantage of
providing a completely constant hematocrit values across domain sizes,
with the disadvantage of little cells across node boundaries with
respect to packing obtained from the cell packer.

◆ cell_positions()

analysis.Analysis.cell_positions (   self,
  pos_file,
  outfile 
)
Use a cell position file as template to pack each node's domain.

The given POS-file is applied as template for all atomic blocks and
repeated across the full simulation domain. This allows to generate
random packings for the smallest domain and repeat these consistently,
however, has the downside of a lack of cells across node boundaries.

◆ cells()

analysis.Analysis.cells (   self)
Number of lattice Boltzmann cells in the domain.

◆ cpu_count()

analysis.Analysis.cpu_count (   self)
The total number of CPUs used for the domain.

◆ dimensions()

analysis.Analysis.dimensions (   self)
The physical dimensions of the domain in micron.

◆ node_count()

analysis.Analysis.node_count (   self)
The number of cluster nodes used.

◆ offsets()

analysis.Analysis.offsets (   self)
The required offsets to shift a templated cell position file.

◆ required_particles()

analysis.Analysis.required_particles (   self,
  hematocrit 
)
Estimated particle count to achieve desired hematocrit.

Member Data Documentation

◆ atomic_block

analysis.Analysis.atomic_block

◆ blocks

analysis.Analysis.blocks

◆ cells

analysis.Analysis.cells

◆ dimensions

analysis.Analysis.dimensions

◆ domain

analysis.Analysis.domain

◆ lattice_unit

analysis.Analysis.lattice_unit