An ellipsoidal domain functional returning true inside the ellipsoid. The EllipseDomain represents an ellipsoidal domain which evaluates to true inside the ellipsoid. The ellipsoid can be given a desired center location and radius for each dimension. However, the EllipseDomain does current not support rotation.
More...
#include <geometry.h>
|
| EllipseDomain (double x, double y, double rx, double ry) |
|
| EllipseDomain (double cx, double cy, double cz, double rx, double ry, double rz) |
| Default constructor specifying the x, y, z coordinates and radii.
|
|
bool | operator() (plb::plint x, plb::plint y, plb::plint z) const override |
|
EllipseDomain * | clone () const override |
|
|
double | cx = 0 |
|
double | cy = 0 |
|
double | cz = 0 |
|
double | rx = 0 |
|
double | ry = 0 |
|
double | rz = 0 |
|
An ellipsoidal domain functional returning true inside the ellipsoid. The EllipseDomain represents an ellipsoidal domain which evaluates to true inside the ellipsoid. The ellipsoid can be given a desired center location and radius for each dimension. However, the EllipseDomain does current not support rotation.
◆ EllipseDomain() [1/2]
geom::EllipseDomain::EllipseDomain |
( |
double |
x, |
|
|
double |
y, |
|
|
double |
rx, |
|
|
double |
ry |
|
) |
| |
|
inline |
The ellipsoid can be constructed with only x,y coordinates and x,y radii. Doing so initialises and ellipsoid at z=0 with infinite radius in the z direction. This mimics a two-dimensional projection and ensures the ellipsoidal domain is constant in z-direction.
◆ EllipseDomain() [2/2]
geom::EllipseDomain::EllipseDomain |
( |
double |
cx, |
|
|
double |
cy, |
|
|
double |
cz, |
|
|
double |
rx, |
|
|
double |
ry, |
|
|
double |
rz |
|
) |
| |
|
inline |
Default constructor specifying the x, y, z coordinates and radii.
◆ clone()
◆ operator()()
bool geom::EllipseDomain::operator() |
( |
plb::plint |
x, |
|
|
plb::plint |
y, |
|
|
plb::plint |
z |
|
) |
| const |
|
inlineoverride |
Returns true if a point (x, y, z) is contained within the ellipsoid. This evaluates the parametric equation: x^2/a^2 + y^2/b^2 + z^2/c^2 = 1, where the equation is translated to the center of the ellipsoid.
◆ cx
double geom::EllipseDomain::cx = 0 |
|
private |
◆ cy
double geom::EllipseDomain::cy = 0 |
|
private |
◆ cz
double geom::EllipseDomain::cz = 0 |
|
private |
◆ rx
double geom::EllipseDomain::rx = 0 |
|
private |
◆ ry
double geom::EllipseDomain::ry = 0 |
|
private |
◆ rz
double geom::EllipseDomain::rz = 0 |
|
private |